Celestial hemisphere:  Northern  ·  Constellation: Monoceros (Mon)  ·  Contains:  12 Mon  ·  NGC 2237  ·  NGC 2238  ·  NGC 2239  ·  NGC 2244  ·  NGC 2246  ·  Rosette nebula  ·  Sh2-275  ·  The star 12Mon
LBN948 Rosette Nebula HaLRBG, Jerry Macon
Powered byPixInsight

LBN948 Rosette Nebula HaLRBG

LBN948 Rosette Nebula HaLRBG, Jerry Macon
Powered byPixInsight

LBN948 Rosette Nebula HaLRBG

Equipment

Loading...

Acquisition details

Loading...

Description

I collected these images at the same time as I was taking images for my Canon 6D version of this target since I have three imaging telescopes on the mount. I can take images on all three telescopes at the same time.

------------------------------------------------------------------------------------------------------------------------------------------------

The Rosette Nebula is a large, spherical, H II region located near one end of a giant molecular cloud in the Monoceros region of the Milky Way Galaxy. The open cluster NGC 2244 (Caldwell 50) is closely associated with the nebulosity, the stars of the cluster having been formed from the nebula's matter.

The cluster and nebula lie at a distance of some 5,000 light-years from Earth and measure roughly 50 light years in diameter. The radiation from the young stars excites the atoms in the nebula, causing them to emit radiation themselves producing the emission nebula we see. The mass of the nebula is estimated to be around 10,000 solar masses.

A survey of the nebula with the Chandra X-ray Observatory has revealed the presence of numerous new-born stars inside optical Rosette Nebula and studded within a dense molecular cloud. Altogether, approximately 2500 young stars lie in this star-forming complex, including the massive O-type stars HD 46223 and HD 46150, which are primarily responsible for blowing the ionized bubble. Most of the ongoing star-formation activity is occurring in the dense molecular cloud to the south east of the bubble.

A diffuse X-ray glow is also seen between the stars in the bubble, which has been attributed to a super-hot plasma with temperatures ranging from 1 to 10 million K. This is significantly hotter than the 10,000 K plasmas seen in HII regions, and is likely attributed to the shock-heated winds from the massive O-type stars. (Wikipedia)

Comments

Sky plot

Sky plot

Histogram

LBN948 Rosette Nebula HaLRBG, Jerry Macon