Celestial hemisphere:  Northern  ·  Constellation: Cygnus (Cyg)  ·  Contains:  52 Cyg  ·  IC 1340  ·  NGC 6960  ·  NGC 6974  ·  NGC 6979  ·  NGC 6992  ·  NGC 6995  ·  Sh2-103  ·  The star 52Cyg  ·  Veil Nebula
Getting plate-solving status, please wait...
Cat takes the veil - Cygnus loop, urmymuse
Powered byPixInsight

Cat takes the veil - Cygnus loop

Getting plate-solving status, please wait...
Cat takes the veil - Cygnus loop, urmymuse
Powered byPixInsight

Cat takes the veil - Cygnus loop

Equipment

Loading...

Acquisition details

Loading...

Description

My little trip round Cygnus with my Redcat51 continued over the last couple of clearish nights - three and half hours exposures used

Guiding better but not brilliant 1.14" error first session 1.10" second

Wiki tells us ....

The visual portion of the Cygnus Loop is known as the Veil Nebula, also called the Cirrus Nebula or the Filamentary Nebula. Several components have separate names and identifiers,[2][3] including the "Western Veil" or "Witch's Broom", the "Eastern Veil", and Pickering's Triangle.

NGC 6960

NGC 6960, the Western Veil, is the western part of the remnant, also known as the "Witch's Broom", located at J2000 RA 20h 45m 58.1s Dec +30° 35′ 43″.[3] As the western-most NGC object in the nebula (first in right ascension), its number is sometimes used as an NGC identifier for the nebula as a whole.

NGC 6992, NGC 6995, and IC 1340

These three luminous areas make up the Eastern Veil. NGC 6992 is an HI shell located along the north-eastern edge of the loop at J2000 RA 20h 56m 19.0s Dec +31° 44′ 34″.[4] NGC 6995 is located farther south at J2000 RA 20h 57m 10.7s Dec +31° 14′ 07″,[5] and IC 1340 even farther south at J2000 RA 20h 56m 12.0s Dec +31° 04′ 00″.[6]

Pickering's Triangle

Also known as Pickering's Wedge, or Pickering's Triangular Wisp, this segment of relatively faint nebulosity was discovered photographically in 1904 by Williamina Fleming at Harvard Observatory, where Edward Charles Pickering was director at the time. The Triangle is brightest along the northern side of the loop, though photographs show the nebulosity extending into the central area as well.

NGC 6974 and NGC 6979

These two objects are generally identified today (as by the NGC/IC Project and Uranometria) with two brighter knots of nebulosity in a cloud at the northern edge of the loop, to the east of the northern edge of Pickering's Triangle. NGC 6979 was reported by William Herschel, and while the coordinates he recorded for Veil objects were somewhat imprecise,[7] his position for this one is tolerably close to the knot at J2000 RA 20h 50m 27.9s Dec +32° 01′ 33″.[7]

The identifier NGC 6979 is sometimes taken to refer to Pickering's Triangle,[8] but the Triangle is probably not what Herschel saw or what the Catalogue intended for this entry: it was discovered only photographically, after the Catalogue was published, and long after Herschel's observation.

NGC 6974 was reported by Lord Rosse, but the position he gave lies in an empty region inside the main loop. It was assumed that he recorded the position incorrectly, and the New General Catalogue gives Rosse's object as the other knot in the northern cloud, located at J2000 RA 20h 51m 04.3s Dec +31° 49′ 41″, one degree north of Rosse's position.[9] (This position is farther east than NGC 6979, even though NGC objects are generally ordered by increasing RA.) These filaments in the north-central area are sometimes known as the "carrot".[10] The spectrum at 34.5 MHz of the region associated with NGC 6974 ranges straight over the entire frequency range 25 to 5000 MHz.[11]

Southeastern knot

The southeastern knot is located at J2000 RA 20h 56m 21.2s Dec +30° 23′ 59″ on the southeastern rim of the Cygnus Loop. The knot has been identified as an encounter between the blast wave from the supernova and a small isolated cloud.[12] The knot is a prominent X-ray feature, consisting of a number of filaments correlated with visual line emission.[12] By combining visual and X-ray data, it can be shown that the southeastern knot is an indentation on the surface of the blast wave, not a small cloud but the tip of a larger cloud.[12] The presence of a reverse shock is evidence that the knot represents an early stage of a blast wave encountering a large cloud.[12]

Until 1999, the most often-quoted distance to the supernova remnant was a 1958 estimate made by R. Minkowski, combining his radial velocity measurements with E. Hubble's proper motion study of the remnant's optical filaments to calculate a distance of 770 parsecs or 2500 light-years.[13][14] However, in 1999, William Blair, assuming that the shock wave should be expanding at the same rate in all directions, compared the angular expansion along the sides of the bubble (visible in Hubble Space Telescope images) with direct line-of-sight measurements of the radial expansion towards the Earth and concluded that the actual size of the bubble was about 40% smaller than the conventional value, leading to a distance of about 1470 ly.[13][14]

A larger revised value of 540 pc (1760 ly) appeared to be corroborated by Blair's later discovery, via the Far Ultraviolet Spectroscopic Explorer (FUSE), of a star seemingly behind the Veil. A UV spectrum of this star, KPD 2055+3111 of spectral type sdOB, showed absorption lines in its spectrum indicate that its light is partially intercepted by the supernova remnant. With an estimated (but uncertain) distance of about 1860 ly away, this star seemed to support the revised estimate of 1760 ly.[14]

A more recent investigation of the Cygnus Loop's distance using Gaia parallax measurements of several stars seen toward the Cygnus Loop has led to a more accurate distance estimate.[15] One of these stars, a 9.6 magnitude B8 star (BD+31 4224) located near the remnant's northwestern rim shows evidence of interactions of its stellar wind with the Cygnus Loop's shock wave, thereby indicating it is located actually inside the remnant. This star's Gaia estimated distance of around 770 ± {\displaystyle \pm } \pm 30 pc, along with two other stars both at 735 ± {\displaystyle \pm } \pm 30 pc which exhibit spectral features indicating they must lie behind the remnant, leads to new distance of 735 ± {\displaystyle \pm } \pm 25 pc or around 2400 light-years. (Note: The Gaia estimated distance to the sdOB star KPD 2055+3111 is 793 pc (2600 ly). This new distance, surprisingly close to the value estimated some 60 yrs ago by Minkowski, means the Cygnus Loop is physically some 40 pc (130 ly) in diameter and has an age of around 21,000 years.[15]

Comments

Revisions

  • Cat takes the veil - Cygnus loop, urmymuse
    Original
  • Final
    Cat takes the veil - Cygnus loop, urmymuse
    B

B

Description: Replaced background with less processed version looks more natural

Uploaded: ...

Sky plot

Sky plot

Histogram

Cat takes the veil - Cygnus loop, urmymuse